Magnetism and Sound Velocities of Iron Carbide (Fe3C) under Pressure

The elastic property and sound velocity of Fe3C under high pressure are investigated by using the spin-polarized generalized gradient approximation within density-functional theory. It is found that the magnetic phase transition from the ground ferromagnetic (FM) state to the nonmagnetic (NM) state occurs at ~73 GPa. Based on the predicted Hugoniot of Fe3C, we calculate the sound velocities of FM-Fe3C and NM-Fe3C from elastic constants. Compared with pure iron, NM-Fe3C provides a better match of compressional and shear sound velocities with the seismic data of the inner core, supporting carbon as one of the light elements in the inner core.The elastic property and sound velocity of Fe3C under high pressure are investigated by using the spin-polarized generalized gradient approximation within density-functional theory. It is found that the magnetic phase transition from the ground ferromagnetic (FM) state to the nonmagnetic (NM) state occurs at ~73 GPa. Based on the predicted Hugoniot of Fe3C, we calculate the sound velocities of FM-Fe3C and NM-Fe3C from elastic constants. Compared with pure iron, NM-Fe3C provides a better match of compressional and shear sound velocities with the seismic data of the inner core, supporting carbon as one of the light elements in the inner core.Read MoreArticle

Be the first to comment

Leave a Reply

Your email address will not be published.


*